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A New FDTD Method for the Study of MRI Pulsed Field Gradient-
Induced Fields in the Human Body
Stuart Crozier, Huawei Zhao and Liu Feng

Centre For Magnetic Resonance, The University of Queensland, St. Lucia, Qld 4072,
Australia

In modern MRI, patients are exposed to strong,
rapidly switched magnetic field gradients that
may be able to elicit nerve stimulation (1-14).
This paper provides the numerical results of an
investigation into induced current spatial
distributions inside human tissue when exposed
to these pulsed magnetic field gradients.
Conventional FDTD methods are unable to
model these effects as the effective frequencies
of the input source are less than 100kHz or so,
relatively low for FDTD calculations. A new
High Definition FDTD variant was developed to
operate over this bandwidth and a number of
body and gradient models are analysed using the
new method.

Introduction
When patients undergo a Magnetic Resonance
Imaging (MRI) scan, they are subject to both
strong static and temporal magnetic fields as well
as radio-frequency fields. MRI is intended to be
a non-invasive modality and any interaction
between these fields and the patients must be
well controlled and within safe limits. As MRI
instrumentation moves towards the use of higher
field strengths and faster scanning, the potential
for field/patient interaction increases. There are a
range of tissues that comprise the human body
and each has a different frequency-dependent
conductivity and permittivity; it is these
properties that effect the interaction with
electromagnetic fields. If the extent of the
field/patient interactions could be better
understood by experimentally validated
theoretical models of the phenomena, then the
equipment can be re-engineered with these
limitations in mind. The resultant scanners
would have both improved performance and
better patient safety.

The temporal magnetic fields in an MR system
are designed to vary at each point in the region
being imaged.  This is achieved by the use of
gradient coils.  However, when the gradient coils
are switched very rapidly, the strong, time-

varying magnetic fields produced can be
responsible for stimulating nerves in the
peripheral regions of the body (PNS). It is a
major goal of this project to devise new methods
for accurately modelling the effects of switched
gradients on the human body and to further
design new, clinically useful, gradient coils that
minimize the risk of such stimulation.

Methods

Conventional FDTD methods proceed by
repeatedly solving for a finite difference
analogue of Maxwells equations within each cell
of a defined lattice. They accomplish this by
attempting to arrive at steady state behaviour for
the E and B fields within each cell as a result of
the tracking of an incident wave and its
interactions with the medium. In a typical FDTD
simulation, computational times on the order of a
few periods of the source are required, limiting
the method to high frequency analyses.

For low frequency problems, it is not feasible to
run the conventional FDTD technique for a full
period. For example, with a 100 Hz source
incident on a biological model of isotropic
resolution 10 mm, conventional FDTD stability
criteria would result in a computation time of
about 100 years! To obtain the solution within a
fraction of the source period, a new time-
frequency conversion method has been
developed. Using the proposed new HD-FDTD
technique, only a finite number of solutions are
needed in the time domain, and then an inverse
approach can be used to calculate Ai  and i� .If

the source electromagnetic field is represented in
Time-Harmonic form, each of the harmonics
may be calculated using FDTD in a relatively
straightforward fashion.

Assuming that the source field consists of
sinusoidal components of frequencies 1� ,
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2� ,� , n� , then the field (magnetic or electric)
can be represented at each temporal point as
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In order to obtain the solution in a very small
fraction of the period of the source, a new time-
frequency conversion technique has to be
adopted. The amplitude and phase terms are the
unknowns to be found. Assuming that the
transient response will die out after pL  loops,
and the corresponding iteration number is

1pL L× .  When 1it pN L L≥ × ,  the time

dependent solutions 1s , 2s ,� , ms  will be

recorded at the times 1t , 2t ,� , mt . In general,
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In our proposed method, only a finite number of
solutions are needed in time domain, and then an
inverse approach is used to calculate iA  and i�

at each frequency. To verify the model, HD-
FDTD calculations based a one-dimensional
plane wave incident on a single, lossy
(conductive) dielectric material were made and
compared with analytical solutions (see figure 1).

Fig. 1 – The test problem

In order to test the absorbing boundary
conditions, Mur’s first order absorbing boundary
is used to absorb the reflected wave and
Berenger’s PML is used to absorb the

transmitted wave. 80� =  and 0.5� =  were
used for the material. The space was broken into
1 cm elements. According to the stability
criterion, for one completed loop (one forward
and backward path), 635 iterations are required.
Two source frequencies, 50 Hz and 100 kHz,
were tested. The results of the convergence
history are given in figure 2, where figure 2 (a)
and (b) present field amplitude and phase
solutions for f = 100 kHz. The solution for f = 50
Hz showed slightly better correlation. The
solutions are calculated for 1 loop, 5 loops, 10
loops and 30 loops, in which the iteration
number are 635, 3175, 6350 and 19050
respectively. The accuracy of the solutions
obtained after 30 loops indicates that the
algorithm is very accurate at low frequency and
that both absorbing boundaries performed
efficiently. The computational time on a single
processor Sun Enterprise 450 was < 1second for
this simple problem.
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Fig.2  The magnetic field amplitude (top) and
phase (bottom) results for the test problem. Note

the excellent convergence after 30 loops.

Results – Human Body Simulation

The human body model (Fig. 3) was positioned
centrally in a magnet system with a Maxwell-coil
pair z-gradient coil. A complete human body
model with frequency dependent electrical
parameters (ε,σ,µ), was used. The inner surface
of magnet was treated as perfect conductor wall.
A PML absorbing boundary, which truncates
computational domain, is used to surround the
human body. A 2.5 kHz current source

0 sin(2 )inJ J f t�= ×  was used to drive a
Maxwell-coil pair gradient set. In this system,
isotropic 1cm resolution was used, representing a
large mesh. After the HD-FDTD algorithm was
run for 40,000 iterations, the eddy current
density was obtained from the E-field solution.
The solutions required approximately 5 hours of
parallel processing on a 4-processor Sun
Enterprise 450. A representation of the eddy
current density in X-Y cross-sections covering
the model is shown in figure 4 .

Figure 3 – The body position

Conclusion

The comprehensive preliminary results shown
above for the calculation of induced fields show
considerable promise as an aid to better
understanding of the interaction between the
pulsed gradient fields generated in an MR
scanner and the human body.
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Figure 4 – The induced current (A/m2) in
various parts of the body model, resulting from a
sinusoidal gradient of peak amplitude 40 mT/m.
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